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Further Convergence Results for the Weighted 
Galerkin Method of Numerical Solution 

of Cauchy-Type Singular Integral Equations 

By N. I. loakimidis 

Abstract. The convergence of the weighted (lalerkin method (based on ChcbvsheN or Jacobi 
polvnoinials) for the direct numerical solution of one-dimensional real Cauchv-tvpe singular 
integral equations of the first and of the second kind on a finite interval is proved under 
sufficientlv weak continuitv assumptions for the kernels and the right-side functions of thc 
integral equations. 

1. Introduction. The problem of convergence of the weighted Galerkin method for 
the direct numerical solution of one-dimensional, real Cauchy-type singular integral 
equations of the second kind with constant coefficients oIn a finite interval (called in 
the sequel simply singular integral equations) [3], [5], [6], [8], [9], [11], [14] will be 
considered again. The results obtained supplement previous relevant convergence 
results [9], [11], [14] and, particularly, those of Linz [11] for singular integral 
equations of the first kind only. The present convergence results make use of the 
uniform norm like the results of [9], [11] and unlike those of [3], [8], [14]. 

The convergence of the above method will be proved under sufficiently weak 
continuity assumptions for the kernels and the right-side functions of the integral 
equations and will be mainly based on the method used by Linz [11] after a slight 
modification of this method. This modification consists in basing the convergence 
results on analogous results for Fredholm integral equations of the second kind [1], 
[2] and not proceeding directly with the singular integral equations under considera- 
tion as in [11]. Although this approach, already used in [3], [6], [8], [9], [14], may not 
be the most direct, it surely is the most economical, yielding a proof of convergence 
with little effort and on the basis of the well-known theory for Fredholm integral 
equations of the second kind [1], [2]. 

2. The Integral Equation. The real singular integral equation to be considered has 
the form 

(2.1) a(p(x) +-f Tt() dt +| Ik(x, t)(p(t) dt = f(x), -I < x < 1 

The constants a and b are given, as well as the kernel k(x, t) and the right sidef(x), 
which are assumed to be continuous functions. The unknown function is T(x), and 
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it is assumed to be possibly unbounded as x - ? 1. Then [10] 

(2.2) (p(x) w(x)g(x), 

where 

(2.3) w(x) = (1 - X)(l + x): 

with 

(2.4) -tan ga = tan 7T = b/a, -1 < a,/3 < O. 

The number 

(2.5) -(a + 

is the index [7] of (2.1). Since K was assumed equal to 1, (2.1) does not possess a 
unique solution unless supplemented by an additional condition, e.g., 

(2.6) fw(t) dt = 0. 

The cases whenK = 0, K = -1 or K 1 and 0 is replaced by a constant C in (2.6) are 
quite similar [3] and will not be considered here. 

Because of (2.2), we can rewrite (2.1) and (2.6) as 

(2.7) aw(x)g(x) + we f t) g(t) dt + _w(t)k(x, t)g(t) dt = f(x), 

-l 

< x < 
1, 

(2.8) f'w(t)g(t) dt = 0. 

We will also use the Fredholm integral equation of the second kind equivalent to 
(2.7) and (2.8) [7], [9], [10] 

(2.9) g(x) + fK(x, y)g(y) dy = F(x), -l ?x? 1, 

where 

(2.10) K(x, y) w(y)4aw*(x)k(x, y) - bw*(t) k(t y)dt, 

(2.11) F(x) = aw*(x)f(x) - bfw*(t) f(t) dt, 

(2.12) w*(x) = l/w(x) = (I - x) ,(1 + x) ", O < -a, -,8 < 1. 

Before proceeding in our analysis, we will assume that the known functions 
k(x, t) and f(x) are not only continuous functions (with respect to x and t on 
[-1, 1]), but also that they possess continuous derivatives (at least with respect to x) 
of orders p1 and P2, respectively, on [-1, 1], which are Holder-continuous [7] with 
indices AI and y2, respectively, that is, 

(2.13) k, f E C, (alax)P' k E- HAIl, f (P2) E HA2 . 

The values of P1,2 and 1 ,2 sufficient for the assurance of the convergence of the 
weighted Galerkin method for the solution of (2.7) and (2.8) will be specified below. 
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3. Convergence Results. We consider first the weighted Galerkin method [3], [5] of 
the numerical solution of (2.7) and (2.8). The existence of a unique solution of the 
system of linear algebraic equations approximating (2.7) and (2.8) was proved (under 
sufficiently weak assumptions) in [3]. The convergence of this method was proved in 
[1 1], [9] in the special case of singular integral equations of the first kind. 

We use the notation pi(x) for the Jacobi polynomial P,(a/8)(x) of degree i 
corresponding to a and /B, defined in (2.4), and p*(x) for the Jacobi polynomial 
P,(-a-/3)(x). We assume that the function g(x) has an expansion of the form 

(3.1) g(x) 
- 

ECII(X), 
I,o 

where, because of the orthogonality properties of T1(x) with respect to w(x) on 
[- 1, 1], 

(3.2) c, 0,-l w(t)g(t)pl(t) dt 

with [13, p. 68] 

u=1-Jwks)T1(L)w- dt = 2i + a + + I F(i + I)F(i + a + +) 

where F(x) denotes the gamma function. Since 

(3.4) F(i + a)/F(i + ,B) = C(i-fl 

we conclude from (3.3) that 

(3.5) 0,-' AI i, 

where A, is a positive constant. We will use in the sequel the symbols Am to denote 
constants independent of i, but, probably, dependent on the functions used, the 
variables x and t, etc. 

Now we assume that g E CP[-1, 1] and further that g(P) E HI[-1, 1]. Then from 
a corollary of Jackson's theorem [12, pp. 22-23] we conclude that there exists a 
polynomial p, ( x) of degree less than or equal to i such that 

(3.6) 11 g -pp, II, < A2i-(P+), 

where the uniform norm HI g l of a continuous function g(x) is used. Since 

(3.7) f'w(t)p_1i(t)Tp(t) dt = 0, 

because of the orthogonality properties of Jacobi polynomials, we find from (3.2) 

(3.8) CZ ' fw(t)[g(t) -pII(t)]Tp(t) dt, 

where pi -(t) denotes the polynomial of degree < i - 1 of best uniform approxima- 
tion to g(t). We further obtain from (3.8): 

(3.9) C, c < 0"- 11 g- P,- lloo w(t) I 99,(t) I dt- 

Taking into account that [13, p. 171] 

(3.10) | - t)v IT1(t) dt _ i-112, 2p > a -3/2, 
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(the symbol - being given the interpretation adopted in [13, p. 1]), we see (since 
(3. 10) holds for v = a) that 

(3.11) f'w(t) I (pi(t) I dt A31 

On the basis of (3.5), (3.6) and (3.11), (3.9) can be written as 

(3.12) c c? IA4i-(P+/L /2) 

Hence, the following lemma is proved: 

LEMMA 1. Let g E CP[-1, 1] and g(P) E H[-1, 1]. Then the coefficients c; of the 
expansion of g into a series of Jaccobi polynomials, determined by (3.2), satisfy (3.12). 

As was shown in [9], the application of the direct weighted Galerkin method (with 
respect to w*(x)) to (2.7) and (2.8) is completely equivalent to the application of the 
same method (but with respect to w(x)) to (2.9). Moreover, it is also clear that the 
application of this method to (2.7) and (2.8) yields an approximation g,,(x) of g(x) 
of the form [1], [2], [3], [5], [9] 

,, 

(3.13) 9,l(x)= Yi() 

which is the closed-form solution of (2.7) and (2.8) if k(x, t) and f(x) are similarly 
approximated by the finite series: 

(3.14) kn,(x t) = S k(t)(Pk*(x)' 
A = 0 

11-1 

(3.15) ftl(x) = 2 -kTk*(X), 
A- =() 

obtained by truncating the corresponding infinite series. 
On the basis of (3.13) to (3.15), we see that (2.7) and (2.8) take the form 

(3.16) aw(x)g,,(x) + 
b 

w(t) g dt+ w(t)k,,(x, t)g,,(t) dt f- x), 
7 t -~d + 'tk 

-1< x <1, 

(3.17) f'w(t)g,,(t) dt = 0, 

whereas (2.9) to (2.1 1) can be written as 

(3.18) g,,(x) + 'K,,(x, y)g,,(y) dy F1(x), -1 < x < 1, 

with 

(3.19) K,,(x, y) = w(y)[aw*(x)kn(x y) (t) dt 

(3 .20) F,,(X ) = aw*(X),(X )--b w* (tb) f(t) dt 

by application of the regularization procedure [7], [10] to (3.16) and (3.17). 
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From now on we will work only with the Fredholm integral equations (2.9) and 
(3.18) to prove the convergence of the direct weighted Galerkin method applied to 
(2.7) and (2.8). We assume, to begin with, that (2.7) and (2.8) possess a unique 
solution. Hence, the same is true with (2.9) and, moreover, with (3.16) and (3.17), as 
well as with (3.18), for sufficiently large values of n. A large amount of theoretical 
results for Fredholm integral equations of the second kind is available [1], [2]. We 
can use, for example, Theorems 4.3, 4.4 or 4.5 of [2, pp. 426-430]. Theorem 4.4, 
slightly modified and adapted to our notation, states that 

THEOREM 1. Suppose that 

(3.21) 11( I + K)-' Il*o 11 K - K II*o < 1. 

Then 

(3.22) 11g - g, II00 

<(I+ [IJF FIl( + KlIg llIK II K-II*,]. 1- (1 + KY' II* 1IK -KI* 

In this theorem uniform norms of operators are also used [2, p. 22]. 
From (3.22) it is evident that the convergence of g,(x) to g(x) is assured if 

1F-F,, 11 x- 0 and 11 K -Kn KI *o - 0 for n - oo. Moreover, if 1lK - KnIl *o -- 0 for 
n 0 oo, (3.21) is also fulfilled under the already made assumption that (2.7) and (2.8) 
and, equivalently, (2.9) possess a unique solution. Hence (I + K)-' exists. 

We now recall that [13, p. 166] 

(3.23) 11 _if', i - , 

where 

(3.24) q = max(a, /3, -2) = max(a, ,/) 

because of (2.4) and (2.5). Hence, we also have 

(3.25) lli*lo qi*, i -- X, q*-=max(-a,-i-mn ,) 

By taking now into account that [10] 

(3.26) aw(x)pi(x) +- 
b 

w(it) ) dt b 2 i(x), 
IT ~ t*(t) 2b'i a' 

(3.27) aw*(x)q4*(x) - b__(t) dt = - _ __+ I(x) 
IT I t - x sin iTa 

and the restriction (2.5), we easily obtain from (3.14), (3.15), (3.19) and (3.20) 

( 3 .28) K"( x, )= 2bw(y) ='- ( 

(3.29) F,(x ) = sin Ta a ekcpk+ l(X)) 
k=O 

Therefore, 

(3.30) K(x, y) - K(, ~ )=-2bw(y) k k+X (3y X Y) = - 2 k(Y)snk+k(X) 
snnak=nl 
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(3.31) F(x) - F,(x) = 2b sin tna"EEP +I( 

On the basis of Lemma 1 and (3.23), we see further that 

(3.32) 1 F-Fn - F < Anfq+3/2-(P2?+I2) 

(3.33) 11K- Kn Al n < q33/2-(Pi +,) 

Then from Theorem 1 it follows that: 

THEOREM 2. Suppose that (2.13) and (3.21) hold and 

(3.34) y = min(p1 + ll, P2 + A2)-(q + 3/2) > 0. 

Then 

(3.35) 1g - g,I, A77n -y 

for the direct weighted Galerkin method of numerical solution of singular integral 

equations. 

This theorem assures the convergence of the method under the assumptions 

already made. Consider as an application the case when a =A - AI 2 = 1, 

p = min( p 1, P2 ). Then from (3.34) y = p, and Theorem 3 of Linz [11 is derived 

again. An improved convergence rate was obtained in [9] in this particular case. 
Consider now in more detail the same special case where a /= = - (but 

independently of the values of IA ,2). Because of (3.14) and (3.15), we obtain 

(3.36) 11 f-ffn ll 0 < An-(P2+L2) log n, a = 0, 

(3.37) Ilk - k lI* <A9n-(P+L)logn, a = 0 

as is clear from the results reported in [12, pp. 22-23, 61]. 
Then, by working exactly as in [4, p. 288], we conclude, on the basis of (2.10), 

(2.11), (3.19), (3.20) and (3.36), (3.37), that 

(3.38) IF- FnJlK sA0on-(P2 +A2),+F a = 0, 

(3.39) IIK- KnII*00 --A,,n-(Pl+lll)+F, a = 0, 

where E is an arbitrarily small positive constant. These results are stronger than 

(3.32) and (3.33), respectively, for the special case considered (a 0 O). The same 

results lead also directly to: 

THEOREM 3. Suppose that a - 0 and 

(3.40) y = min(p, + I P2 + M2) > o, 

where - is an arbitrarily small positive constant. Then Theorem 2 holds true for this 

value of y. 

Unfortunately, it has not been possible up to now to generalize this result for 

singular integral equations of the second kind. From Theorems 2 and 3 it follows 
also that under the assumptions made in this section the direct weighted Galerkin 
method of numerical solution of singular integral equations converges if k, f E 

HA[-1, 1] (O < y s 1) (with respect to the x-variable) in the case of singular integral 
equations of the first kind, and at least if (a/ax)k, f (l) E H* [-1, 1] ( I I<s 1) in 
the case of singular integral equations of the second kind. 
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